
Chapter 1

The Language of Statistical
Mechanics

Additional Reading

See also McQuarrie Ch. 1, Dill and Bromberg Ch. 1

The Theory of Measurements

I. Objectives of Statistical Mechanics

A. Describe macroscopic properties in terms of microscopic (single molecule,
single atom) properties

B. Derive the postulates of equilibrium thermodynamics

C. Describe finite systems where thermodynamics fails

i. Melting of small clusters

ii. Nanoparticles

iii. Single molecule experiments

D. Describe fluctuations from equilibrium

E. Macroscopic properties of non-equilibrium solutions

i. Chemical reactions rates

ii. Nucleation

II. Terminology

A. Macroscopic: U , H, A, G, S, µ, p, V , T , Cp, CV

B. Microscopic: consider for example, an N particle monatomic gas
(N non-interacting particles in a 3D box)
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i. From classical mechanics: ~px, ~py, ~pz, ~qx, ~qy, ~qz for each particle
(~p3N , ~q3N ) = 6N degrees of freedom

ii. From quantum mechanics: nx, ny, nz for each particle = 3N
degrees of freedom

C. Assembly: collection of a large (i.e., N) number of particles

D. State [of an assembly]: a fully specified set of coordinates for every
particle (i.e., 6N from CM or 3N from QM)

i. Two classical states, α and β, for an assembly of N particles

α p1x, p1y, p1z, q1x, q1y, q1z,
p2x, p2y, p2z, q2x, q2y, q2z,
...
pNx, pNy, pNz, qNx, qNy, qNz

β p′1x, p′1y, p′1z, q
′
1x, q′1y, q′1z,

p′2x, p′2y, p′2z, q
′
2x, q′2y, q′2z,

...
p′Nx, p′Ny, p′Nz, q

′
Nx, q′Ny, q′Nz

ii. Two quantum states, α and β, for an assembly of N particles

state n1x n1y n1z n2x n2y n2z ... nNx nNy nNz
α 1 1 0 2 1 1 0 1 2
β 2 1 2 2 1 3 1 2 2

iii. In either description, states evolve in time. Classically,

q̇i =
∂H

∂pi
(1.1)

ṗi = −∂H
∂qi

, (1.2)

from Hamilton’s equations of motion (or equivalently Lagrange
or Newton’s equations of motion). Quantum mechanically, we
have

ih̄
∂

∂t
Ψ (xi, yi, zi, t) = HΨ (xi, yi, zi, t) (1.3)

E. Degeneracy: Ω(E,N) is the number of distinguishable states of an
assembly whose energy is E and particle number is N .

F. Ensemble: a collection of all possible states of an assembly or all
states sampled in an infinite amount of time.

G. Ergodic Hypothesis: The time average of the microscopic quanti-
ties gives the same macroscopic result as an ensemble average

III. Approaches to the Central Problem of Statistical Mechanics - how do we
calculate macroscopic, time-averaged properties from rapidly fluctuating
microscopic quantities?
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A. The Brute Force Approach: Time-average over microscopic proper-
ties. In this approach, we watch in real time which states the assem-
bly visits, monitor the variable of interest, and compute its average,

〈f〉 = lim
τ→∞

1

τ

∫ τ

0

f(t)dt, (1.4)

where 〈f〉 is an observed macroscopic quantity and f is a microscopic
mechanical variable associated with operator F . This calculation is
difficult and often impossible because it requires knowledge of the
time dependence of a very large number of positions and momenta
or quantum numbers.

B. Ensemble Theory: compute an average over all feasible states of an
assembly and rely on the ergodic hypothesis. Often we can enu-
merate the states possible for an assembly without watching them in
real time. In lieu of this missing information, we employ statistics
and probability.

IV. Important Concepts about Probability

A. Probability arises when we

i. Have a random or uncertain future event. For example, we are
about to throw a die and the probability of getting 3 is 1

6 .

ii. Have non-random, incomplete information about an event. For
example, the die has already been thrown and our best guess is
”equal likelihood.”

iii. Need statistical information about multiple events. For example,
we throw 6000 dice or one die 6000 times. What is the fraction
of 3s expected or measured?

B. Probability Distributions

Property Discrete Distribution Continuous Distribution
Distribution Pi: i = 1, 2, ..N P (x)dx

Normalization
∑N
i=1 Pi = 1

∫ xmax

xmin
P (x)dx = 1

Positivity Pi ≥ 0 ∀i P (x) ≥ 0 ∀x

Examples
dice, cards, Kronecker δ,

binomial, polynomial, Poisson
Dirac δ, Gaussian,

Fermi-Dirac, Boltzmann

Note that for continuous distributions, P (x) is the probability density
which gives the probability between x and x+ dx.

C. Description of a probability distribution in terms of moments For a
discrete variable, i, or a continuous variable, x, the nth moment of
the probability distribution is defined as,

〈in〉 = in =

∑N
i=1 i

nPi∑N
i=1 Pi

(1.5)
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〈xn〉 = xn =

∫ xmax

xmin
xnP (x)dx∫ xmax

xmin
P (x)dx

, (1.6)

where the denominators are only necessary if the distributions have
not been normalized.

i. 0th moment (normalization)〈
i0
〉

=
〈
x0
〉

= 1 (1.7)

ii. 1st moment (mean value, statistical average, expectation value)

〈i〉 =
1 · P1 + 2 · P2 + 3 · P3 + . . .+N · PN

P1 + P2 + P3 + . . .+ PN
(1.8)

=

∑N
i=1 iPi∑N
i=1 Pi

(1.9)

〈x〉 =

∫ xmax

xmin
xP (x)dx∫ xmax

xmin
P (x)dx

(1.10)

iii. 2nd moment (variance, standard deviation, dispersion, mean squared
deviation)

〈
i2
〉

=

∑N
i=1 i

2Pi∑N
i=1 Pi

(1.11)

〈
x2
〉

=

∫ xmax

xmin
x2P (x)dx∫ xmax

xmin
P (x)dx

(1.12)

The variance is defined as the square of difference from the mean,
which is shown below to be equal to the difference of 2nd moment
and the square of the 1st moment,

V ar(x) =
〈

(x− 〈x〉)2
〉

(1.13)

=
〈
x2 − 2x 〈x〉+ 〈x〉2

〉
(1.14)

=
〈
x2
〉
− 2 〈x〉 〈x〉+ 〈x〉2 (1.15)

= < x2 > − < x >2 . (1.16)

The standard deviation is the square root of the variance, and is
sometimes preferred because it has the same units as the mean
and original variable.

Std(x) = σ =
√
V ar(x) =

√
< x2 > − < x >2. (1.17)

D. Probability distributions are often used to evaluate the mean value
of a function (expectation value, statistical average). This is

〈F 〉 =
F (1) · P1 + F (2) · P2 + ...+ F (N) · PN

P1 + P2 + . . .+ PN
, (1.18)
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for a discrete distribution and

〈F 〉 =

∫ xmax

xmin
F (x)P (x)dx∫ xmax

xmin
P (x)dx

(1.19)

for a continuous distribution.

E. Probability distributions are also generalizable to several variables
and are called multivariate probability distributions. For example,
P (x, y) gives the probability density of measuring the first variable
between x and x+dx and simultaneously the second variable between
y and y + dy.

Property Multivariable Continuous Distribution
Distribution P (x, y)dxdy

Normalization
∫ xmax

xmin

∫ ymax

ymin
P (x, y)dxdy = 1

Positivity P (x, y) ≥ 0 ∀x, y

Examples
hands in blackjack, outcome in rolling two dice,

velocity and nearest neighbor distance in solution

The probability distribution can be factored in the case that the two
variables are uncorrelated,

P (x, y) = Px(x)Py(y). (1.20)


