CHEM 430/530A - FALL 2015

INSTRUCTOR: Office: E–Mail:	Ziad Ganim CRB–216 (6–9370) ziad.ganim@yale.edu			
REFERENCE BOOKS:	S: Statistical Mechanics; D.A. McQuarrie			
	(recommended) Molecular Driving Forces: Statistical Thermodynamics in Biology, Chemistry, Physics, and Nanoscience; K.A. Dill, S. Bromberg (recommended) An Introduction to Statistical Thermodynamics; Terrill L. Hill			
COURSE WEBSITE:	http://canvas.yale.edu, then add this course			
TIME/LOCATION:	MW 9.25-10.15 in Sterling Chemistry Lab 19			
	<i>F(optional)</i> 9.25-10.15 in Rosenkranz Hall, Room 01 Off-hours computer lab: Kline Biology Tower, CSSSI			

General Description:

The fundamentals of statistical mechanics developed and used to elucidate gas phase and condensed phase behavior, as well as to establish a microscopic derivation of the postulates of thermodynamics. Topics include ensembles; Fermi, Bose, and Boltzmann statistics; density matrices; mean field theories; phase transitions; chemical reaction dynamics; time correlation functions; Monte Carlo and molecular dynamics simulations.

Grading: Homework, Examinations, and Final:

Problem sets will be assigned and due approximately weekly. The problem sets and final emphasize the skills necessary to use statistical mechanics in research. As such, many Friday class meetings are dedicated to working through practical issues relevant to the problem sets and course material in a discussion format, and those sessions are *optional*. Midterm examinations will be scheduled by majority opinion of the class and will take place in the late afternoon.

Problem Sets	50%	Six assignments
Midterm I	15%	Between Sep 25 – Oct 2
Midterm II	15%	Between Nov 2 – Nov 9
Final Project	20%	Final Report: Dec 18, Oral Presentations: Dec 21, 9am-2pm

In lieu of a final examination, you will have an opportunity to demonstrate your understanding of the course material with a final project that will consist of a written report and oral presentation. The topic and scope of work should be approved by the instructor by Nov 20. The final project topic may be drawn from your research interests, a topic outside your thesis, or by extending any problem set from the course. The written component should be in *J. Phys. Chem. Lett.* format (template <u>http://pubs.acs.org/page/jpclcd/submission/authors.html</u>). The oral component will be a 20 min presentation of your work followed by a question/answer period with the class.

Снем 430А/530A Fall – 2015

Course	e Sche	dule:	
2-Sep	Lec 01	Assemblies, Ensembles, and The Ergodic Hypothesis	PS1 Assigned
4-Sep	Lab 01	Optional: Discussion/PS1	
9-Sep	Lec 02	Macroscopic Properties from Microscopic Probabilities, Canonical Distribution	PS1 Due / PS2 Assigned
11-Sep	Lec 03	Information Theory and Statistical Mechanics	
14-Sep	Lec 04	Macroscopic Properties from the Canonical Partition Function	
16-Sep	Lec 05	Microcanonical Ensemble and Fluctuations	
18-Sep	Lab 02	Optional: Discussion/PS2	
21-Sep	Lec 06	Separable Hamiltonians, Distinguishable vs. Indistinguisable Particles	
23-Sep	Lec 07	Boltzmann, Fermi-Dirac, and Bose-Einstein Statistics	PS2 Due
		Midterm I Covers Lec01-07, PS1-2	
25-Sep	Lec 08	Molecular Partition Function, Translational Part of Boltzmann Partition Function	
28-Sep	Lec 09	Quantum vs. Classical Qtrans . Equipartition. Internal Degrees of Freedom	PS3 Assigned
30-Sep	Lec 10	Internal Degrees of Freedom for Atoms and Diatomic Molecules	
2-Oct	Lab 03	Optional: <mark>Discu</mark> ssion/PS3	
		Midterm I Deadline	
5-Oct	Lec 11	Rotational Partition Function. Equipartition	
7-Oct	Lec 12	Polyatomic Molecules	
9-Oct	Lab 04	Optional: <mark>Discu</mark> ssion/PS3	
12-Oct	Lec 13	Polyatomi <mark>c Molecules</mark>	PS3 Due / PS4 Assigned
14-Oct	Lec 14	Nuclear Spin Statistics: Symmetry Number, Sigma	
16-Oct	Lab 05	Optional: Discussion/PS4	
19-Oct	Lec 15	Catch up	
26-Oct	Lec 16	Introducti <mark>on to</mark> Density Matrices	PS4 Due / PS5 Assigned
28-Oct	Lec 17	Density Matrices and Application to Spin Systems	
30-Oct	Lab 06	Optional: Discussion/PS5	
		Midterm II Covers Lec08-17, PS3-5	
2-Nov	Lec 18	Model Intermolecular Potentials, Virial Equation of State	PS5 Due / PS6 Assigned
4-Nov	Lec 19	Simple Liquids	
6-Nov	Lab 07	Optional: Discussion/PS6	
9-Nov	Lec 20	Einstein and Debye Solids	
		Midterm II Deadline (Covers Lec08-16, PS3-6)	
11-Nov	Lec 21	Free Electron Theory of a Metal	
13-Nov	Lab 08	Optional: Discussion/PS6	
16-Nov	Lec 22	Chemical Equilibrium and Phase Transitions	
18-Nov	Lec 23	Chemical Reaction Rate Theory	
20-Nov	Lab 09	Optional: Discussion/PS6	PS6 Due
		Final Project Topic Approval Deadline	
30-Nov	Lec 24	Special Topics 1 (i.e., Non-equilibrium Statistical Mechanics, Onsager relations)	
2-Dec	Lec 25	Special Topics 2 (i.e., Macromolecules, Statistical Mechanics of Water)	
4-Dec	Lab 10	Final Project Work	
7-Dec	Lec 26	Thermodynamics I	
9-Dec	Lec 27	Thermodynamics II	
11-Dec	Lab 11	Final Project Work	
18-Dec	Final	Written Final Due	
21-Dec	Final	9am-2pm, Final Presentations	

Computer Lab / Matlab Programming:

Friday computer lab meetings will take place in Rosenkranz Hall (Prospect 115), Room 01. Hours and further information: <u>http://schedule.yale.edu/csssi_rkz</u>

A closer option to the chemistry buildings is the CSSSI Classroom in the Kline Biology Tower, C27, subject to availability when other classes are not in session: <u>http://schedule.yale.edu/csssi_kbt</u>

You are also encouraged to download and run Matlab on your personal machine, which is available free of charge to all Yale students. Begin by navigating to:

http://software.yale.edu/Library/chooseOS and following your OS-specific instructions.

