Chemistry 430/530a Practice Midterm 1

Ziad Ganim 9/21/2015

Problem 1.1.

$$k_{B}T = \frac{200 \text{ cm}^{-1}, 0.6 \text{ kcal/mo(}_{1}, 2.5 \text{ kJ/m}}{(any \text{ unit system})}$$

$$Q(N, V, T) = \frac{1}{N}$$

$$Q(N, V, E) = \frac{1}{N}$$

$$S(p_{j}) = \frac{1}{N}$$

$$S(p_{j}) = \frac{N!}{(N-N)! \text{ n}!}$$

$$\frac{N!}{(how \text{ many ways to order } N)}$$

$$distinguishable \text{ particles in n slots}$$

Problem 1.2.

In class we derived, $\langle E \rangle$ and $\langle E^2 \rangle$. Please derive an expression for the ensemble average energy to the nth power, $\langle E^n \rangle$ using your Q(N, V, T) from Problem 1.1.

Since
$$\langle E \rangle = -\frac{1}{Q} \frac{\partial Q}{\partial B}$$
 and $\langle E^2 \rangle = \frac{1}{Q} \frac{\partial^2 Q}{\partial B^2}$
Try $\langle E^n \rangle \stackrel{?}{=} \frac{\partial^{(n)} Q}{\partial B^{(n)}}$
 $\frac{\partial^{(n)} Q}{\partial B^{(n)}} = \underbrace{\sum_{j} \frac{\partial^{(n)}}{\partial B^{(n)}}}_{j} e^{-\beta E_{j}}$
 $= \underbrace{\sum_{j} (-E_{j})^2}_{j} \frac{\partial^{(n-2)}}{\partial B^{(n)}} e^{-\beta E_{j}}$
 $= \underbrace{\sum_{j} (-E_{j})^n}_{j} e^{-\beta E_{j}} = Q(-1)^n \langle E^n \rangle$
 $\stackrel{?}{=} \underbrace{\langle E^n \rangle}_{j} = \underbrace{\langle E^n \rangle}_{j} \frac{\partial^n Q}{\partial B^{(n)}}$

Problem 1.3.

Please draw, roughly to scale, the phase space plot for a classical particle in a 1D box of length L with energies E_0 , $2E_0$ and $4E_0$. Please label the axes. How does the distance between contours depend on energy?

Particle in a 1D Box:
$$X = [O, L]$$

$$\frac{p^2}{2m} = E$$

$$p = \sqrt{2mE'}$$

$$p = -2\sqrt{mE'}$$

$$p = -2\sqrt{2mE'}$$

$$x = L$$

$$\frac{P_1}{p_2} = \sqrt{\frac{2mE_1}{2mE_2}} = \sqrt{\frac{E_1}{E_2}}$$

Problem 1.4.

Given

$$Q = \frac{e^{-\beta\hbar\omega/2}}{1 - e^{-\beta\hbar\omega}},$$

please evaluate

$$A = -\frac{1}{\beta} lnQ$$

$$\langle E \rangle = -\frac{\partial}{\partial \beta} lnQ$$

$$S = k lnQ + \frac{\langle E \rangle}{T}$$

$$C_V = \frac{\partial \langle E \rangle}{\partial T},$$

and show that $C_V = k_B$ when $k_B T \gg \hbar \omega$ using the approximation valid at high temperatures, $e^{\hbar \omega/k_B T} \approx 1 + \frac{\hbar \omega}{k_B T}$.

$$\int_{A} Q = -\frac{\beta \pi \omega}{2} - \ln[1 - e^{-\beta \pi \omega}]$$

$$A = \frac{\pi \omega}{2} + \frac{1}{\beta} \ln[1 - e^{-\beta \pi \omega}]$$

$$= \frac{\pi \omega}{2} + \frac{\pi \omega e^{-\beta \pi \omega}}{1 - e^{-\beta \pi \omega}} = \frac{\pi \omega}{2} + \frac{\pi \omega}{e^{\beta \pi \omega} - 1}$$

$$= -\frac{1}{2} + \frac{1}{1 - e^{-\beta \pi \omega}} = \frac{\pi \omega}{2} + \frac{1}{e^{\beta \pi \omega} - 1}$$

$$= -\frac{1}{2} + \frac{1}{1 - e^{-\beta \pi \omega}} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$= -\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$= -\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$= -\frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \frac{1}{2}$$

$$= -\frac{1}{2} +$$

Problem 1.5. Here we consider a one-dimensional chain of n segments, as illustrated below. Each segment can exist in two states- length x = a or length x = 0. When tension F is applied, the energy of a segment is $F \cdot x$, or $a \cdot F = aF$ for extended or $0 \cdot F = 0$ for contracted segments, respectively. Thus by changing F, we can change the energy difference between the two states.

What is the partition function, Q, for one segment at temperature T and tension F?

Using this result, calculate the average length, $\langle x \rangle$ of one segment as a function of T. $\langle \chi \rangle = \frac{(0)_1 + (a)_1 e^{-Fa/kT}}{1 + e^{-Fa/kT}} = \frac{\alpha e^{-Fa/kT}}{1 + e^{-Fa/kT}}$

For n segments, the length will be $n\langle x \rangle$. Verify that this result leads to Hooke's Law, $n\langle x \rangle = c_0 + c_1 F$, at high temperatures where the limit $e^{-Fa/k_BT} \approx 1 - \frac{Fa}{k_BT}$ is applicable.

$$h < x > = \frac{na e^{-Fa/kT}}{1+e^{-Fa/kT}}$$

As $kT >> Fa$, $n < x > \rightarrow \frac{na (1-Fa/kT)}{(2 \sqrt[4]{Fa/kT})^0} = \frac{na}{Z} - \frac{na^2F}{2kT}$
 $C_0 = \frac{na}{Z}$, $C_1 = \frac{-na^2}{2kT}$ (F<0 for spring to stretch with increasing tension.)

Problem 1.6. Recall the 1D Ising model with N spins, each situated at a lattice site, and each spin may be up or down.

$$\uparrow \downarrow \uparrow \uparrow \downarrow \uparrow \uparrow \cdots \downarrow$$

We will treat four spins with no nearest neighbor coupling. If we represent an \uparrow with $s_i = +1$ and \downarrow with $s_i = -1$, then the energy function for the system, the Hamiltonian, is

$$H = -J \sum_{i=1}^{4} s_i. {1}$$

For four spins, please write out all possible energy levels and the degeneracy for each energy level.

States		Energy	52	S/K
TTTT		-45		In 1=0
TATE TALT THAT	1777	-57	4	J24
TT IT TUE	1771	0	6	ln 6
ILLT LLTL LTLL	144	27	4	lu4
444		45		Onl

Sketch a plot of how the entropy S changes as a function of the energy of the system. Recall that we define the temperature $\frac{1}{T} = \frac{dS}{dE}$. Show that the temperature is negative as $E \to E_{max}$. Does negative temperature mean the system is "colder"?

SKAY DE CO: TCC

These are non-thermal configurations with highinternal energy - not "cold" in the conventional sense.